

Infinite Terrain Generation
Using Voronoi Diagrams

ENGG492-Y – Honours Research and Management Project

10/16/2017
Supervised by Bill Rogers
Andrew Leach – ajl36 -1137001

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 ii

Abstract
Games today which contain worlds spanning thousands of kilometres of terrain (environment) hold

a burden on the computers resources in terms of computation and storage, especially when the

terrain is generated at run-time.

It is a desirable attribute for a game to handle terrain of this size (for use in simulators or exploration

based games), while needing no long-term storage on the computer and therefore removing any

bottlenecks of storage or network usage (by sharing terrain in a multiplayer context).

To remove any obvious regularities in the generated terrain, the direct use of Voronoi Diagrams will

be explored as the base structure of the terrain in an infinite context. As Voronoi Diagrams are

inherently meant for finite area construction, the possibilities to remove this limitation will be

investigated.

This report outlines the approach of generating an infinite (only limited by numeric precision) terrain

generator at run-time that requires no long-term storage, is applicable for game-usage, and

generated a realistic environment.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 iii

Table of Contents
Abstract ... ii

1 – Introduction .. 1

2 – Related Work .. 2

2.1 – Grid-based Terrains .. 2

2.1.1 – Irregular Grids using Voronoi .. 2

2.1.1.1 – Polygon Regularity ... 3

2.2 – Height Map Generation ... 6

2.2.1 – Perlin Noise ... 6

2.2.2 – Fractals .. 6

2.2.3 – Erosion... 6

2.2.3.1 – Rain Erosion.. 7

2.2.4 – Primitive Shapes .. 7

2.3 – Biomes .. 9

2.3.1 – Temperature and Precipitation ... 9

2.4 – Consideration Techniques .. 10

2.4.1 – Performance .. 10

3 – Approach ... 11

3.1 – Development Environment .. 11

3.2 – Deterministic Nature .. 11

3.2.1 – Terrain Grid Overlay .. 11

3.3 – Voronoi Diagrams... 13

3.3.1 – Voronoi Diagrams .. 13

3.3.1.1 – Arbitrary Infinite Voronoi Extension .. 16

3.3.2 – Point Generation ... 17

 .. 17

3.4 – Height Creation .. 18

3.4.1 – Shape Generation ... 18

3.4.1.1 – Large Scale Structures .. 19

3.5 – Biome Generation .. 20

3.5.1 – Temperature and Precipitation ... 20

3.6 – Terrain Representation .. 21

3.7 – Evaluation ... 21

4 – Implementation .. 22

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 iv

4.1 – Grid Overlay ... 22

4.2 – Voronoi Diagrams... 23

4.2.1 – Point Placement .. 23

4.2.2 – Voronoi Generation .. 24

4.3 – Shape Generation .. 28

4.3.1 – Circles .. 29

4.3.2 – Line Generator .. 29

4.3.2.1 – Line Differences .. 30

4.3.2.2 – Height Influences ... 31

4.3.3 – 3D Rendering ... 32

4.3.3.1 – Smooth Lighting ... 32

4.3.3.2 – Float Imprecision .. 33

4.4 – Biomes .. 35

4.4.1 – Biome Colours and Water ... 35

4.4.2 – Trees .. 37

4.5 – Algorithm Steps .. 38

5 – Evaluation .. 38

5.1 – Evaluation Metrics ... 38

5.1.1 – Storage Requirements and World Size ... 38

5.1.2 – Replay Value .. 39

5.1.3 - Multiplayer ... 39

5.1.3 – Efficiency ... 39

5.1.4 – Effectiveness of Voronoi ... 39

5.1.5 – General Realism .. 40

5.1.6 – Game Usage .. 42

5.2 – Potential Issues .. 43

5.2.1 – Bounded Generation ... 43

5.2.2 – Double Imprecision ... 43

5.2.3 – Shape Super Grid ... 43

5.3 – Future Work ... 43

5.3.1 – Storage .. 43

5.3.2 – More Primitive Shapes .. 43

5.3.3 – More Biomes ... 43

5.3.4 – Immersive Environment .. 44

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 v

6 – Conclusion ... 45

Bibliography .. 46

Appendix A .. 48

Appendix B .. 49

Figure 1 - A Voronoi diagram, with the red dots representing the set of points as input [5] 2

Figure 2 - A picture showing the line sweep performed to produce irregular polygons during Fortunes

Algorithm .. 3

Figure 3 - The comparison of Voronoi Diagrams produced with Lloyds Relaxation (on the left) vs

without (on the right). The K value used for Lloyds was 2 ... 4

Figure 4 - Points generated from Poisson Disk Sampling with K = 30 .. 5

Figure 5 - Practical Perlin Noise Example .. 6

Figure 6 - A terrain before rain-erosion (on the left) and after (on the right) [10] 7

Figure 7 - Primitives with Erosion to produce a fantasy map [12].. 8

Figure 8 - Classification of a biome based on precipitation vs temperature. [13] 9

Figure 9 - Grid coordinate system ... 12

Figure 10 - Terrain generated within Minecraft, showing obvious squares as its basis. Source:

http://www.minecraftforum.net/forums/mapping-and-modding-java-edition/minecraft-

mods/1291067-atg-alternate-terrain-generation .. 13

Figure 11 - Grid overlay for generating repeatable results at a large scale, shows generated points

within each cell using their coordinates as the numerical seed ... 14

Figure 12 - Two Voronoi Diagrams produced side in neighbouring cells, showing the lack of seamless

connection .. 14

Figure 13 - Voronoi sweep-line effect on the left is exploited to ensure a region of polygon will be

unchanged on the right. .. 15

Figure 14 - A single Voronoi Diagram extending a 3x3 grid area .. 16

Figure 15 - Showing how the 3x3 grid allows for a seamless connection when moving up amongst the

centre neighbouring cells .. 17

Figure 16 - A cell broken up in to finer cells for adequate point distribution 17

Figure 17 – Comparison of 2017 Mean Temperature of USA (left) [26], 2017 Total Precipitation of

USA (middle) [26] and Perlin Noise Example (right) [1] .. 20

Figure 18 - Segment of the 3D visualization of the terrain generated from this project. 22

Figure 19 - The corner of four cells sharing a single polygon ... 24

Figure 20 - Connection over polygons over cell borders .. 25

Figure 21 – Shows the seamless generation of connecting Voronoi Diagrams which follow the cells

surrounding a player’s path (yellow lines). The orange explosions represents teleport endpoints

within the game. ... 26

Figure 22 - In game settings which effect Voronoi Diagrams ... 26

Figure 23 - Comparison of the "Polygon Regularity" setting Unordered (Left) vs Very Ordered (right)

 .. 27

Figure 24 - Visualization of generated circle primitive shapes over standard four grids cells (on the

left) – Generation of a circle on the right can be seen from a super shape cell 29

Figure 25 - A connected line segment featuring branching. This is of type hill. 30

file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930736
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930737
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930737
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930738
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930738
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930739
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930740
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930741
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930742
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930743
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930744
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930747
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930747
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930748
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930748
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930749
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930750
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930750
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930751
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930752
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930752
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930753
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930754
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930755
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930756
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930756
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930756
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930757
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930758
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930758
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930759
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930759
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930760

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 vi

Figure 26 - Initial 3D rendering of a 3x3 grid structure, each cell being 2000x2000 pixels 32

Figure 27 - Comparison of terrain with (on the right) Weighted Vertex Normals against without (on

the left) ... 33

Figure 28 - Incorrect hashing causes tearing in terrain .. 34

Figure 29 – Comparison of the same terrain being rendering with (on the right) water and without

(on the left) ... 36

Figure 30 - Smoothing of biome colours to match the criteria (temperature vs precipitation) 36

Figure 31 - Showing trees with a chunk removed for scale. The cell is 2000x2000 pixels 37

Figure 32 - A segment of terrain to highlight the visible irregular polygon structure 40

Figure 33 - Comparisons of in-game terrain segments against real-world features (left to right).

Photos sourced via www.pixels.com .. 41

Figure 34 - Three segments of terrain found within the seed of 1234, showing flat areas, large water

features and explorable mountain ranges .. 42

Table 1 - Colours for each biome. Colours are listed with their respective R G B values 35

file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930762
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930762
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930764
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930764
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930768
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930768
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930769
file:///C:/Users/Thickshake/Desktop/Final%20Report%20V5.docx%23_Toc495930769

 1

1 – Introduction
Procedural Terrain Generation, referring to the generation of the playable surface within a games

world, is a topic of great interest as creating a terrain which has the ideal balance between

performance, realism and interest is a near impossible task to achieve. Techniques such as Perlin

Noise [1] and Fractals [2] have become kings in today’s age, popularized heavily by their hybrid

usage in such games as “Minecraft” [3], “No Mans Sky”, “Just Cause”, “Elder Scrolls II” and others

[4]. These games make use of proven techniques, yet lack a repeatable and identical deterministic

nature in their generation. These games have very large terrains, spanning thousands of kilometres

and due to the level of detail of the terrain the storage requirements on the computer is intensive.

This puts heavy strain on system resources, in both requiring the storage of the generated terrain as

well as in a multiplayer context, the sharing of the generated terrain over the network which may

cause bottlenecks.

It is easy to overlook the need for larger storage for a games terrain as the fact that hardware

capacity progresses so quickly, which has caused a stagnated approach to address the issue. Having

a deterministic terrain generator, in the sense that any segment of the terrain can be re-generated

and be identical each time it is generated, allows for very large or “infinite” terrains to be generated

without the need for any storage on the computer.

The terrain in games however must contain interesting geological features, such as large flat areas

for building and battles, mountain ranges to explore, and a variety of contrasting environmental

features to keep the terrain interesting over a long period of exploration. The reason for the need to

generate very large worlds is to be able to incorporate many players, and allow for various modes of

transport: such as fast flying planes, or teleportation to far away areas.

Thus, the motivation is to explore the possibility of creating a terrain generator which has the

desirable properties of being deterministic while maintaining the larger scale properties (terrain

features which extend much further past the users view).

The aim is to create a terrain generator which allows the theoretical infinite construction of

connected terrain while having the desirable deterministic property and being able to generate a

unique and vast terrain holding realistic and large-scale structures. This terrain must contain

geological areas which apply directly to game-usage, such as large flat areas, lakes and mountain

ranges. To add variety to the base structure of the terrain and add a more realistic feel, irregular

polygons will compose the smallest units of this generated terrain.

This report will outline the process undertaken during the project, the successes and failures of a

variety of techniques tested, and the issues encountered with both the framework and language of

choice for the development of this project.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 2

2 – Related Work

2.1 – Grid-based Terrains
Grid-based terrains are the bed-rock of many large-scale terrain generation algorithms, such as in

“Minecraft” [3]. Grid-based terrain means the systematic breakdown of terrain in to small,

identifiable and regular shaped chunks which create the larger world. These are usually squares or

hexagons, and are extremely popular to implement as it makes it easy to identify and manipulate.

However, although simple to implement, it has drawbacks if not correctly implemented as it can lead

to visible artifacts being formed in the terrain if each individual shape is too large; or if it is too small,

performance starts to suffer.

2.1.1 – Irregular Grids using Voronoi

In recent years, investigation in to the use of non-regular shapes as the basis for grids has occurred

for terrain generation, specifically, the use of non-regular polygons [5]. The common application for

generating these non-regular polygons come from a diagram known as a “Voronoi Diagram”.

Voronoi Diagrams are generated from the input of a non-zero set of points of size N and will produce

N irregular polygons, with a single point inside each polygon [6]. Figure 1 shows a standard Voronoi

Diagram output, containing N red dots (the input set of inputs) surrounded by N irregular polygons.

The art of constructing this diagram can be done in O(nlogn) time, and O(n) space (both worst case

bounds) assuming 2D scenarios, where ‘n’ is N (the size of points passed in). These bounds are

achieved using Fortunes Algorithm [6], which performs a line-sweep over the points to generate the

Figure 1 - A Voronoi diagram, with the red dots representing the set of points as
input [5]

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 3

diagram. As Voronoi Diagrams are inherently built off random numbers, it is possible to generate it

deterministically if the same numeric seed value is used given a deterministic pseudo-random

number generator. The use of deterministic pseudo-random generators is a powerful tool as given

the same seed it will always generate the same sequence of numbers [7]. This seed is a numeric

integer.

Figure 2 shows how the line sweep is performed during the execution of Fortunes Algorithm over a

set of points. It works by creating parabolas based on each of the points towards the sweeping line

(left to right in this instance) and then generating the polygons based on these parabolas. It is clear

that, the polygons which are already created on the left-hand side will be unaffected if the points on

the right are now changed. This is a property of Fortunes Algorithm which may be exploited to

extend the generation to larger areas.

Although Fortunes algorithm is the most efficient algorithm for producing 2D Voronoi Diagrams,

there exists no published algorithm that allows the arbitrary and seamless addition of neighbouring

Voronoi diagrams in any direction. This means that no practical “infinite” Voronoi diagram algorithm

exists, and that the standard algorithms are designed to be produced in a finite area.

The idea here for using irregular polygons, opposed to regular shapes (such as squares) is that it

removes any obvious pattern in terrain generation, by adding extreme variation in the basic

structure of terrain. The drawback is the added complexity in implementation and handling of the

irregular shapes.

Voronoi Diagrams have potential to be used as the bed-rock to a terrain generator, as this would

produce an alternative basis for terrain. Investigation for this project would have to be made in to

potentially extending this to be used in an infinite fashion and to check the results of using irregular

polygons as the basis of the terrain.

2.1.1.1 – Polygon Regularity

Further alteration can be done in affecting how the irregular polygons are formed during the

Voronoi diagram construction using Fortunes Algorithm [6]. Often erratic and very sharp changes

between polygons form undesirable effects within a terrain [5] and therefore work can be done to

make these more regular while still retaining uniqueness. There are two well-known ways to create

Figure 2 - A picture showing the line sweep performed to produce irregular
polygons during Fortunes Algorithm

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 4

more well-formed polygons: Lloyds Relaxation Technique; and by averaging out the distance

between points in the input set.

Lloyds Relaxation is a technique used specifically in conjunction with Voronoi Diagram construction,

with the purpose being of creating more regular polygons [8]. It works by doing K iterations (with a

higher number producing more regular results) of the Voronoi Diagram algorithm of choice, each

time using the centroids of each produced polygon in the previously generated diagram as the basis

for the set of input points, which then is used to create another diagram with (the old diagram is

discarded). . Generally K is very small (less than 5) and therefore does not significantly influence the

running time. A direct contrast between using Lloyds and not (Figure 3) show drastic results with as

little as two iterations, given the same input size. It is worth noting that Lloyds will retain a

deterministic nature assuming the same seed is used to repeat the process.

Figure 3 - The comparison of Voronoi Diagrams produced with Lloyds Relaxation (on the left) vs without (on the right).
The K value used for Lloyds was 2

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 5

Another method to produce more regular polygons are based on creating more regular point

distribution to generate the diagram from. Averaging the distance out between points can be done

in a host of ways with the most effective technique being Poisson Disk Sampling [9]. It works by

generating new points around existing points, which have at least a minimum distance of D, in turn

creating a distributed output set. Poisson can be done in O(kn) time, where k is very small (less than

30), and produces a set of points which are more evenly distributed the larger k is (Figure 5).

This technique has become the concrete improvement over the old technique named “dart

throwing” which had a complexity of O(n^2) [9]. This has become a popular method due to its

deterministic nature, effective results and its linear running time.

Being able to alter the regularity of the polygons has direct application within this project as it

directly effects how the terrain will form. It will drastically change the base structure, and therefore

be able to create drastically different terrain just by modifying the regularity. Both Lloyds and point-

distribution techniques should be investigated along with their results to compare in practice.

Figure 4 - Points generated from Poisson Disk Sampling with K = 30

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 6

2.2 – Height Map Generation
The generation of height maps refers to the creation of depth (height – the Z axis) of the 2D terrain,

thus directly transforming it in to 3D. Some current techniques which have been popularized due to

their simplicity in understanding and implementation while retaining effective results are Perlin

Noise [10] and Fractals [10].

2.2.1 – Perlin Noise

Perlin noise is a “noise” function which creates an arbitrary sequence of pseudo-random numbers

[1]. However, Perlin Noise has a made a fantastic match for game-usage due to its “smooth”

transitions between these numbers; the fact that it is deterministic; and fast in computation. Figure

5 shows a practical usage of Perlin Noise that produces a “smooth” transition of pseudo-random

numbers amongst regions.

As Perlin Noise is both deterministic and fast in computation, it may have direct uses as a

component within the projects final algorithm for generating a smooth transition of values over the

worlds map. Some practical implementations may include a rain-fall map over the terrain.

2.2.2 – Fractals

Fractals are another technique which involves repeating many nested simple shapes to produce

complex terrains with refined detail [10]. The idea is that self-similarity amongst repeated shapes (of

varying size) mimics well the natural processes in the real-world such as erosion and plant growth. It

works by subdividing a shape of choice (such as a triangle) into many nested triangles inside a larger

one. By repeating this process, unlimited refinement of detail in a region is possible.

2.2.3 – Erosion

Erosion is a broad term used to define a technique that helps to mimic the change of a terrain over

time due to the influence of an external (generally real-life) factor. The idea is that terrain is

Figure 5 - Practical Perlin Noise Example

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 7

influenced over many years due to external factors, and modelling this will help to produce more

realistic terrain. Erosion comes in many forms, but often it will be specific to water-flow, in particular

how rain influences a terrain [10].

The core principle of erosion is the displacement of some “mass” in the terrain from one area to

another, and therefore inherently, erosion is difficult to implement when considered in terrain which

is generated in real-time.

2.2.3.1 – Rain Erosion

Rain-based erosion is popular due to its proven success. However, it is intensive computationally and

difficult to implement, which often leads smaller terrain generators to shy away from such an

algorithm. Figure 6 shows the transition of the same terrain before and after rain-based erosion,

which helps to generate a more realistic mountain range from a rough terrain [11].

As can be seen, there is considerable success in the ability to transform a terrain from a rough-

outline in to something more natural and realistic by simulating how the flow of water over terrain

would mould it.

Erosion has potential in this project to create more realistic looking terrain, however, investigation

would have to be put in to ensuring a seamless integration with an infinitely extending terrain.

2.2.4 – Primitive Shapes

Primitive shapes is defined by the use of very simple shapes, such as circles, cones, lines, to be

placed over the terrain and influence the heights of the surrounding environment. The idea behind

this is that terrain is shaped from very strong geological factors, such as meteors or tectonic plate

movements, which leave craters in the earth, large hill gradients or mountain ranges. It is because of

this that the use of primitive shapes helps create a “raw” terrain.

However, the use of primitive shapes is difficult as often tricky implementation or the need for post-

processing (such as water erosion) to help mimic how these raw influences were shaped over

hundreds of years.

Figure 6 - A terrain before rain-erosion (on the left) and after (on the right) [10]

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 8

Success has been seen in many finite-area terrain generators when coupling both primitive shapes

and erosion techniques. Seen in Figure 7, a fantasy map generator has been produced using primtive

shapes of cones, circles, and gradients (to mimic tectonic plates) [12]. The use of a water-based

erosion mapped water flow downwards to sea. Although successful, this project does not extend

easily to make a infinite extension.

Primitives are deterministic in nature to place, and very computational cheap. Depending on the

primitives chosen, this has potential due to the fact it scales easily with an infinitely expanding

terrain.

Figure 7 - Primitives with Erosion to produce a fantasy map [12]

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 9

2.3 – Biomes
Biomes play a crucial role in the generation of interesting terrain for game-usage, as they add variety

and a reason to explore, with different biomes containing different forestry, and other features.

Biomes in the real-world exist, and are a product of two main factors: temperature and precipitation

[13].

We can see in Figure 8 the emergence of a particular biome type based on an areas’ precipitation

and temperature.

2.3.1 – Temperature and Precipitation

Temperature and precipitation are both hard aspects of a game to accurately generate for an area,

between being realistic and interesting to create a proper spread of biomes. Lack of variation will

make a dull terrain with no changes in biome, whereas erratic changes will cause too many biomes.

An issue between not generating smooth transitions between temperature and precipitation also

needs to be considered as only related biomes should be near each other. Often, this leads to the

use of Perlin Noise for the generation of precipitation and temperature mappings due to the smooth

transition and deterministic nature of such a function [10].

Temperature, however, is easier to determine for a region based on the different in the regions

height to sea-level. Based on real world statistics, on average temperature falls 9.8 degrees C per

1000 meters above sea level [14]. This can be used in influencing temperatures based on elevation.

Figure 8 - Classification of a biome based on precipitation vs temperature. [13]

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 10

Precipitation is not as easy to map realistically, due to the nature of the game terrain, there are

many factors which contribute to precipitation which may not be implemented.

Biomes are an easy thing to implement, assuming the temperature and precipitation are mapped

well, while providing a solid basis for variety within a generated terrain. Temperature and

precipitation have potential to be deterministic and computational cheap (through methods such as

Perlin Noise) and therefore allow a pathway to implementing biomes in to an infinite terrain.

2.4 – Consideration Techniques

2.4.1 – Performance

The idea that the terrain is intended for game-usage, and can infinitely extend in any direction in

real-time, means that the algorithm must be fast enough that it will not cause a noticeable delay in

the application and interrupt the gaming experience.

It is shown that 0.1s is the limit before a user will notice any real delay, and that 1.0s is the limit

before their flow of thought is interrupted [15]. Therefore in the consideration of an infinite, real-

time terrain generator, is it important to account for these limits and ensure that the generation of

near-by terrain takes less than 0.1s.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 11

3 – Approach

3.1 – Development Environment
The choice of development environment was biased due to my previous experience with Microsoft

.NETs C# programming language; as due to time constraints and difficulty of this project, it was not

justified to learn a new language for this cause. MonoGame [16] is a powerful game development

engine which will be used alongside C# to produce this project. MonoGame is the open-source

replacement of the Microsoft XNA framework [16] containing broad support for 3D rendering

projects, perfect to develop an open-world terrain in. The rendering system within MonoGame is

based on a X,Y,Z coordinate system, with the X and Y values modifying in the nature seen in Figure 9.

MonoGame has native support for compiling down its projects to be used on the Windows, Linux

and Mac operating systems [16].

3.2 – Deterministic Nature
To ensure a deterministic nature in terrain generation while allowing the regeneration of a specific

world when desired, all the pseudo-random number generators used must be based off the same

numerical seed as this will in turn ensure all the algorithms which are used in the generation to

produce the same results each run. This guarantees repeatable and identical results when needed,

regardless of the player or instance invoking the call to generate terrain. Because of this, all worlds

generated will have a numerical seed associated with them, this also means that the seed will be

required to be shared amongst all players of the same world.

3.2.1 – Terrain Grid Overlay

All the algorithms explored within the background were deterministic at their core, yet often limited

to a region, such as Fortunes Algorithm. Knowing that the algorithms are deterministic, but for a

specific region, it is possible to exploit this nature by creating a simple square grid-structure over the

entire terrain. Each grid cell will be a perfect square, with a width and height P. The grid cells will be

assigned an X and Y value, as if they were in a 2D array, except X and Y may be negative (meaning X

and Y are elements of the integer set of values Z). Their values increment in the fashion shown in

Figure 9.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 12

We can treat each individual grid cell as a region, and perform deterministic procedures on each grid

using its coordinate in space (X and Y, as it is a 2D grid) as the basis of its numerical seed to ensure

repeatable and identical results. We can map together these numerical values (X and Y) to a single

numerical value, using the Cantor function [17] which allows a unique and deterministic mapping

function of two numerical values to a single value. In practice, this requires that the two-numerical

values map to a single value which has twice the number of software bits as first two. For example,

in the example of C#, the short variable type is built on 16 bits while the integer variable type is built

on 32 bits [18]. This means that using the Cantor function, we can uniquely and deterministically

map two short variable types to an integer within C#. However, two integers cannot be mapped to a

single integer correctly as we require the output to have twice the bits and this creates a restriction

we must consider when implementing the project.

We can repeat this process again, by mapping the grids’ X-Y single value together with the original

numerical seed assigned with the world, to get the final seeds value for a given grid cell. This now

means that within that cell we can get truly deterministic and identical results every time, and can

base the generation algorithms at a cell-by-cell level, yet still allow to have different worlds.

X – 0, Y - 0 X increases X decreases

Y increases

Y decreases

Figure 9 - Grid coordinate system

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 13

3.3 – Voronoi Diagrams
The choice in the smallest unit of the terrain, although seemingly easy, has the largest effects on the

overall structure and how realistic it looks and feels. Having a natural looking terrain starts by

ensuring what it is made from mimics the real-world, and therefore the choice of using irregular

polygons was made to try hide any regularity to give a less generated feel (An extreme case is

“Minecraft” with its obvious square blocks (Figure 10))

Figure 10 - Terrain generated within Minecraft, showing obvious squares as its basis. Source:
http://www.minecraftforum.net/forums/mapping-and-modding-java-edition/minecraft-mods/1291067-atg-alternate-
terrain-generation

Background research shows how Voronoi Diagrams are a powerful and proven technique used to

quickly and deterministically generate a set of irregular polygons within a region. The issue with

using Voronoi Diagrams regarding the projects aim, is that Voronoi Diagrams are designed to be

constructed in a single finite area without natively allowing for further seamless extension in one of

the following directions: up; down; left; and right.

3.3.1 – Voronoi Diagrams

The use of the grid-system explained in the previous section allows us to exploit the nature of

Voronoi Diagrams and, without changing the overall time complexity, seamlessly generate additional

Voronoi Diagrams in each of the four directions that connect correctly. Seen in Figure 11 we have a

basic grid structure overlay consisting of (red visualized) squares. These squares each have

generated, independently of other cells, points consisting of pseudo-random X and Y values within

their square region, shown as white dots, using a pseudo-random generator with the seed being

based off the worlds seed merged with their coordinate seed as described in section 3.2.1.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 14

Figure 11 - Grid overlay for generating repeatable results at a large scale, shows generated points within each cell using
their coordinates as the numerical seed

As we can generate these points in a deterministic and repeatable fashion, we can now for each

grid-cell region produce a Voronoi Diagram also in a deterministic and repeatable way as the points

are the input to the diagram. The core issue here, however, is that producing them independently

causes a non-seamless connection in neighbouring cells as seen in Figure 12.

Figure 12 - Two Voronoi Diagrams produced side in neighbouring cells, showing the lack of seamless
connection

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 15

These Voronoi Diagrams will be produced using Fortunes Algorithm [6] as this currently is the most

efficient algorithm to produce Voronoi Diagrams in 2D space. Having neighbouring cells not

seamlessly connect (Figure 12), would cause severe and obvious tears in the resulting terrain as the

basic blocks would tear at the “borders” of these grids. This would therefore in turn show obvious

square-based grids in the resulting terrain, making the push for an irregular polygon based terrain

pointless as a way of hiding regular shapes.

It is possible to exploit this grid-structure, while still using Fortunes Algorithm (to maximise speed),

to remove this limitation of tearing, and therefore allow the theoretical infinite seamless

construction of connected Voronoi Diagrams.

Fortunes Algorithm is a sweep-line algorithm, which defaults to sweeping left to right, iterating over

all the points and creating parabolic relations between all the points. This will result, once the sweep

is complete, in a Voronoi Diagram. The effect of using the sweep-line within Fortunes Algorithm

(seen on the left in Figure 13) has the property that certain polygons (within the yellow rectangle)

will not be affected in shape regardless of how the edge points on the right change. This means the

very edge points (points outside of the yellow square on the right in Figure 13) in the grid cell have

the effect of only changing then outside polygons, while having minimal to no effect on the polygons

produced within [6]. Therefore, if we can guarantee that points always exist outside of this yellow

rectangle, the inside polygons will always be the same. This is the principle used in the extension for

seamless connection.

This property however only works if there are enough points, and these points are evenly distributed

well enough. If the points are not well distributed, or there are not enough (say, 2 per cell) this

property will no longer work. This issue will be covered more in detail later under “Point

Generation”.

Figure 13 - Voronoi sweep-line effect on the left is exploited to ensure a region of polygon will be
unchanged on the right.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 16

3.3.1.1 – Arbitrary Infinite Voronoi Extension

By exploiting this property now known due to the sweep line, seen in Figure 13, we can enlarge this

property to multiple cells. If we take a 3 by 3 grid section, from the grid-overlay, and then generate a

single large Voronoi Diagram which includes all the points of these cells, we will get a result like what

we see in Figure 14.

This now offers a potential solution to the neighbouring polygon edge connection issue. The yellow

rectangle is shown again as an rough illustration of which polygons will likely be unaffected if only

the points creating the edge polygons outside of this yellow rectangle change.

We can exploit this property, if for every single cell, we generate the corresponding 3x3 grid and

then only extract the single (centre) cell. This will in turn mean every single cell which is generated

and extracted will have edge polygons which directly align with their neighbours. This works, as the

yellow square (which indicates polygons of certain shape), will always include the edge connections

to its neighbours. This adds a 9 (3x3) times constant factor to Fortunes Algorithm as each cell now

must incorporate all the points of the neighbouring cells, but this does not change the overall

running time. A possibly optimization is worth mentioning in that we can only process the Voronoi

Diagrams up until the yellow lines, which would reduce the overall time complexity.

An illustration of this is seen in Figure 15, where as you move up, you can see there is a change in

the edge polygons outside the yellow square, while the centre cell will always have an aligned

connection to its neighbours.

Figure 14 - A single Voronoi Diagram extending a 3x3 grid area

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 17

3.3.2 – Point Generation

The success of this extension to Fortunes Algorithm rides on the assumption that the points within a

cell are evenly distributed and that there are many of them, to ensure that only the edge polygons

will change in the event of different points being used to generate a Voronoi Diagram. When we

randomly generate points within a region, we can break it further down (Figure 16) and then

generate points within each of these regions. This ensures that there will always be points within the

edges of a square, and will keep the inner-cell polygons unaffected. In practice, however, for larger

cells, more refinement of cells is needed and will be discussed further in the implementation.

Although Poisson Disc Sampling was investigated in the background section, this method of point

generation ensures there are edge points within a given cell.

Figure 15 - Showing how the 3x3 grid allows for a seamless connection when moving up amongst the centre neighbouring cells

Figure 16 - A cell broken up in to finer cells for adequate point distribution

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 18

3.4 – Height Creation
In the background there were many options discussed, such as Perlin Noise, Fractals, Primitive

Shapes and Erosion. These can build upon any basic shape, and therefore the choice of using

Voronoi Diagrams to use irregular polygons is irrelevant for the choice in height creation.

This height-map will be assigned at a per-polygon level.

However, with the aim of the project being to build large scale worlds in a deterministic and efficient

way and to not require the information of any previous generated terrain to generate a new area,

this adds serious constraints regarding using the methods discussed. Rain erosion is used specifically

for a finite area, and although deterministic, is computational expensive for realistic results, and

relies on the assumption that there is some place for material, such as direct, to flow to. As this

project is generating areas in real-time, environmental features are not necessarily known for

neighbouring cells and therefore the built-up material could become piled up at area borders.

This becomes a challenge as it is very important to hiding any forms of artificial construction, such as

erosion build up at cell lines.

Perlin Noise is a proven technique which is deterministic and very fast in computation. Using Perlin

Noise alone, however, will generate a lack of large scale and realistic structures due to the degree of

variation and influence it gives (Figure 5). This makes it impractical to guarantee the generation of

features that will be used for game-usage, such as mountain ranges, peaks, and large flat areas.

Using Primitive Shapes gives the best control over the specific features that should be included in

the generated terrain. The choice of shapes can allow for mountain ranges, flat areas, and a diverse

changing environment both small and large in scale while involving minimal implementation detail.

3.4.1 – Shape Generation

The difficulty with correctly implementing these primitive shapes to generate terrain, is that with

previous implementation attempts in real-world projects they were used with a conjoint algorithm,

such as erosion (which is impractical in our infinite setting) to create realistic terrains [5] [12].

However, with some consideration, it is possible to theoretically produce terrain which is realistic

enough for game-usage with primitive shape influence alone.

The primitive shapes themselves will be generated at a per-cell basis, meaning, any given cell will

have a set of shapes associated exclusively with one cell. This means that the shapes will be

generated in a deterministic way, based on the numerical seed associated with that cell.

The shapes that will be used are:

• Circles

• Connected line segments

The idea here was to keep it simple, and focus on creating a “line generator” which would produce

connected line segments to mimic real world structures. These include mountain ranges, rivers and

more. The circles are to represent natural variations, bumps, and depressions in the terrain.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 19

These shapes will be placed over the terrain, and will influence the polygons in the Voronoi Diagrams

which are close to the shape, with either a negative or positive height influence. These shapes are

generated by placing them at a random X, Y coordinate within their respective cell.

For circles, there will be a random radius and height (either negative for depressions, or positive for

hills) assigned. Connected line segments will be more complicated, and will have random features

associated depending on whether it is a mountain range, river or hill.

Mountain ranges will be longer, strong positive influences that will often branch out, requiring that

the connected line segments allow for branching. Rivers will be long, and smooth line connections

with minimal angle changes. Their height influence will be a gradual depression. Hills will be like

mountains, except a weaker influence. The actual line generation will still be randomly created.

However, depending on the line-type, their random values will be more likely to assume the

characteristics specified.

Each cell will get a randomly allocated a number of shapes, with circles being the most common.

3.4.1.1 – Large Scale Structures

Shapes generated inside a given cell have the potential to overflow the cells borders in to

neighbouring cells. It is crucial to detect this and ensure the neighbouring cells are influenced

correctly, else there will be obvious influence formations at all the borders which will not look

natural. Shapes are required to be very large, to create proper mountain ranges, hills or rivers. It is

not practical to generate both very large and very small shapes from a single grid cell.

The way around this is to create a separate grid-overlay structure, specifically for large shapes. This

will be a “super grid” in that each cell will be exactly 10 times as large (therefore one super grid cell

contains 10x10 normal grid cells). These are specifically to generate large shapes to ensure the

generation of large scale structures, while keeping the smaller shapes to be generated in the

ordinary cells. This gives both a large and small-scale shape generation to give a realistic feel.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 20

3.5 – Biome Generation
Biomes are a method to add interest and variety to a terrain, which is especially important for very

large-scale worlds. The biomes are to be based off Whittakers biome model [13], however a simpler

approach will be taken. The existing model features a very realistic and distinct model of the biomes

which exist in the real world, but due to both time constraints and in the essence of game-usage, a

higher-level biome selection will be chosen.

These high level biomes will incorporate a variety of the biomes listed in Whittakers; and will be:

• Grass – encapsulates Boreal forest, Temperate seasonal forest and Woodland/shrubland.

• Desert – encapsulates Temperature grassland / cold desert and Subtropical desert

• Snow – encapsulates Tundra

• Wet Grass – encapsulates Temperate rainforest and Tropical rainforest.

These simplifications make it easier for the individual to identify and remember unique features

about each terrain while still adding a variety.

These biomes will still be accurately based off the precipitation vs temperature chart in Whittakers

model, and be applied to each polygon in the Voronoi Diagram.

3.5.1 – Temperature and Precipitation

For biomes to exist accurately, the terrain must have numerical temperature and precipitation value

at any given region. This project will incorporate these two features using Perlin Noise, as it is

deterministic, efficient and allows the smooth transition of values over large areas which model

temperature and rain-fall in the real-world well, as seen in Figure 17. Furthermore, to ensure

temperature is more accurate, it will be influenced by the height of the region that it is in, dropping

by 7.9 degrees Celsius per 1000 metres as in the real world [14]. The ratio of how temperature is

determined is 30% by the Perlin Noise random value, and 70% on the regions elevation. The

precipitation will be purely the value given by the Perlin Noise.

The temperature and precipitation will use different Perlin Noise functions, and the input to this

noise function will be the X and Y coordination’s of the region, to ensure a deterministic and

repeatable nature.

Figure 17 – Comparison of 2017 Mean Temperature of USA (left) [26], 2017 Total Precipitation of USA (middle) [26] and
Perlin Noise Example (right) [1]

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 21

3.6 – Terrain Representation
Until the height-map was produced, the project needed a way to render to both measure progress

and debug. A 2D representation was built to show the Voronoi Diagrams and Shape generator and to

ensure that they were working correctly. After this, effort was put in to generating a 3D engine

utilizing MonoGames powerful framework.

Having both the 2D and 3D representation will allow the best of both worlds for debugging and

evaluation.

3.7 – Evaluation
Evaluation technique is the most important part of this project it needs valid methods to ensure the

algorithm was a success. As in the aim, we want a world generation which is fully deterministic (and

therefore require no physical storage), efficient, and effective in producing terrain which has realistic

features seen in the real world (such as mountains, rivers) and areas of terrain good for game usage

(such as flat areas, and mountains also).

The first evaluation technique can simply be tracking the performance of the terrain generation in

real time, and ensuring that the in-game computation of generating neighbouring terrain is done in

under 0.1ms as this is the time the users will notice delay, and in the event of a teleportation, the

overall time taken to generate a completely new area will take less than 1.0 as this will alter the

users flow of thought [15].

The next evaluation technique will be ensuring used by comparing the generated terrain to real-

world terrain and seeing if real world features exist in the terrain, such as mountain ranges. And in

similar fashion, ensuring the terrain holds interesting features that will be used directly for games.

Various other methods such as terrain size in real-world metrics could be used and to ensure that

the game meets the aim by requiring no storage on the computer.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 22

4 – Implementation
Sections (3-3.7) laid out the high-level view of the significant components used in conjunction to

meet the aims of the project. The implementation varies greatly from the high-level view seen in the

approach, as that does not account for practical issues that are encountered in programming. This

implementation will specifically be done using C# 6 and MonoGame using Visual Studio 2017 to

develop in.

Figure 18 shows a segment of terrain generated by the result of this project, with the initial terrain

seed of 123124. As with the initial aims of this project, all the terrain here can be reproduced exactly

just with this initial seed, as every component used was ensured to be fully deterministic. This yields

the benefit of only needing to share a single seed amongst all players who wish to engage on a single

world, as well as no storage being needed on the computer as every area can be regenerated as

needed. For scale, there is a single cell missing in the top right corner which is of size 2000x2000

pixels.

The seed which backs the terrain will be a 32-bit C# signed integer value, and will be randomly

assigned at the start of each instance unless specified. All of the random values generated within this

project utilize C#’s native random class, which is a pseudo-random generator [19]. This means that

given the same numerical seed it will produce the same sequence of values every time.

Figure 18 is the result of all the algorithms specified in the approach running in conjunction in real

time. The implementation is as follows:

4.1 – Grid Overlay
This was the first part to implement as it was the back-bone to ensure a deterministic large-scale

terrain generation. Throughout the implementation, extreme care was taken in the coding to ensure

as much flexibility as possible in all the algorithmic features. This meant that by the end of the

project, it was very easy to tweak major settings. In the grid overlay, there are a set of grid sizes to

choose from. These sizes are 1000 (small), 2000 (medium), and 4000 (large) pixels, both identical in

height and width to create squares.

Figure 18 - Segment of the 3D visualization of the terrain generated from this project.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 23

Each grid cell has a unique X and Y coordinate representing the top left corner, which can be used to

generate a unique numerical value (with the Cantor Function [17]), which then is further combined

with the terrains unique seed to generate a single numerical value distinct to that cell. This final

numerical value works as the seed value for the pseudo-random generators for the algorithms in

that cell to ensure a deterministic nature. Due to the constraints of C#, we are limited to using the

long type (which is 64 bits) [18] as this is the largest numerical type that can be practically be used as

the seed backing the pseudo-random generators.

As we are limited by this size of 64 bits for the final seed used in the cell, and the way in which the

Cantor function works, this means that the unique value produced for each X and Y must be 32 bits.

The terrains seed is also 32 bits (the sum is 64 bits). This limits the X and Y types to be a C# short

which has a maximum negative and positive value of –32,768 to 32,767 respectively. Using the

largest grid cell size (large- 4000 pixels) this roughly allows the total world size to be 7800km wide

(Appendix B).

The project itself then will be limited by these X and Y values, and will be unable to generate grids

further out than the limits of the short, in effect giving a cap to the “infinite” nature. This is a

consideration, as it is not practically infinite, rather, just very large.

4.2 – Voronoi Diagrams
Voronoi Diagrams were implemented using Fortunes Algorithm as the means of construction. This

algorithm proved to be complex to implement. It involved the use of 2D points, using MonoGames

inbuilt Vector2 [20] class (a struct holding an X and Y float variable). The generation within Fortunes

Algorithm requires the use of randomly generated values, which again, utilize the random class with

the cells unique seed.

4.2.1 – Point Placement

Fortunes algorithm takes in a set of points as it’s input, and the region to create the diagram in. The

points are created based on the grid-break technique discussed in the section 3.3.2, which ensures

that there is always a good distribution of points as well as sufficient edge points for the region. For

flexibility, there is a “Polygon Regularity” setting, which allows Not Ordered (1), Semi-Ordered (2)

and Ordered (4) with the default being Semi-Ordered. These set a multiplier for the number of

internal grid areas to be created within a cell to produce random points within. A cell will be broken

in to 16 multiplied by the setting, sub-cells. The more sub-cells, the more regular the point

distribution will be which also effects how regular these polygons will be as they are more sparsely

separated.

To ensure enough points too, the number of points is proportional (linearly) to the size (in pixels) of

the grid cell. The choice in number of points are Low (3), Medium (5) and High (7) which represent

the multiplier on how many points are generated, with the default being Medium. There will always

be enough points to put at least one point in to every sub-cell. The more points, the more polygons

there will be, which also means for a fixed cell size, the smaller each polygon will be on average.

All the points were based off the inbuilt random class in C#, using the cells numerical seed, allowing

for repeatable and identical results. The X and Y values for each point were generated within the

specified region.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 24

4.2.2 – Voronoi Generation

As defined in the approach, the “infinite” and seamless generation of neighbouring Voronoi

Diagrams in real-time require the generation of a single Voronoi Diagram over the respective 3x3

grid structure surrounding the single cell we wish to produce. This means we must pre-generate the

points for these areas. Once the diagram is produced, we cull off all the polygons which are not

contained within this single cell and then assign the corresponding diagram to the cell.

The result is that a specific cell will be associated with a Voronoi Diagram, which holds a set of

polygons. However, the extension which allows for a seamless connection creates the issue of

polygons extending over cell borders, as seen in Figure 19.

In this figure, we can see that at the border of four cells, each of the cells Voronoi Diagrams share a

polygon. However, in the construction, four separate polygons will be created. This created a

technical complication, as not only do we not want to re-create an already created polygon, but also

want to create a link between the separate Voronoi Diagrams so we can map pathing between cells

over polygons.

To overcome this, whenever an edge polygon is made (one which overlaps a cell border) it will check

all other cells which it overlaps in to check if the polygon has been made already. If it has, it will not

re-add it, and furthermore will generate a link between the cells.

Figure 19 - The corner of four cells sharing a
single polygon

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 25

This method now allows for connections to be made between polygons which belong to different

Voronoi Diagrams, allowing pathing to exist, which will be useful for water flow, and evaluation

methods. These connections can be seen by the green lines which show the polygons connections to

their neighbouring polygons (Figure 20).

Figure 20 - Connection over polygons over cell borders

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 26

Figure 21 is an example to show how only the cells relevant to the user’s path are generated. It

shows how if a user teleports, as in a game mechanic, it does not require the generation of all the

path between, yet will only generate the relevant information to the user. Whenever the user leaves

a path, it will destroy the objects to conserve system resources as it can re-generate the identical

terrain again later.

The Voronoi Diagrams therefore now are based off three-flexible settings: Grid Size; Point Amount;

and Polygon Regularity; which are all changeable at run-time (Figure 22).

These settings drastically change how the polygons are shaped; for example, the difference between

the Point Distribution setting “Unordered” and “Very Ordered” is considerable – Low point amount

setting was used for easier comparison (Figure 23).

Figure 22 - In game settings which effect
Voronoi Diagrams

Figure 21 – Shows the seamless generation of connecting Voronoi Diagrams which follow the cells surrounding a
player’s path (yellow lines). The orange explosions represents teleport endpoints within the game.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 27

Figure 23 - Comparison of the "Polygon Regularity" setting Unordered (Left) vs Very Ordered (right)

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 28

4.3 – Shape Generation
The ability to generate extending Voronoi Diagrams in real-time, creates a structural basis for terrain

to be built upon. All the polygons created have their corresponding X and Y regions defined;

meaning that if each polygon has a height corresponding to it, it will be able to be rendered in 3-

dimensional space.

Each polygon will have a single numerical height, which will be normalized between 0 and 1. The

height values used to normalize these values will be zero as minimum height, and maximum being

the grid-size (therefore, larger grid sizes allow taller structures). The reason behind this maximum

height cap is to avoid have structures taller than they are wide, as a means of controlling very sharp

gradients and mitigate areas which aren’t explorable in a games context.

As discussed in the approach, each cell which needs to be generated will generate a list of shapes to

be associated with it. As mentioned, there is also the concept of “super-shape grids” where each

super-grid cell encapsulates 10 standard grid cells. Therefore, when a standard cell needs to

generate its terrain, so must the super-shape cell containing it (however only the shapes are

generated in this super-shape cell). This grid is implemented in the exact same way containing an X

and Y coordinate, and being generated when it is visible to the user.

Shapes sizes are directly proportional (linearly) to the size of the cells dimensions they are generated

from (and therefore if it is generated from within a super-grid cell, it will be on average 10 times

larger). This helps to scale the shapes with changing grid sizes.

The shapes generated can be large, and go over many cell boundaries. However, consideration was

made to ensure that it will never go over more than four boundaries. Because of this, whenever a

cells terrain needs to be generated, so must the all the cells in the 4x4 boundary (as well as the

super-shape grid) around it to check for any shapes which overlap into the specific cell.

The shapes which currently implemented are circles, and connected line segments.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 29

4.3.1 – Circles

Circles were the first primitive shape to be created, and were simple to imp lement. Each circle holds

an X,Y coordinate to represent its location, along with a radius and height influence. Circles are

intended to be used for general “noise” in the terrain, and generate hills at a larger scale. Figure 24

shows an example of four standard cells with their generated circles (on the left) while on the right a

circle generated from a super cell can be seen, with standard cells for scale.

The circles themselves will only influence the heights of the polygons which are inside their radius.

This influence will either be negative, or positive depending on whether the circle is a depression or

hill (this is a 50% random chance); as this allows for either lakes or hills features to be formed. The

influence is completely linear in its effect, with the peak of influence being at zero distance between

the centre of the circle and the polygon.

The height is always directly proportional to the radius, (with a constant factor being random

between 0.5 and 1.5). The radius is a random value from one fifth of the grid size, to half the grid

size.

4.3.2 – Line Generator

The ability to generate custom connected line segments was difficult task to implement well as this

“shape” is intended to generate rivers and mountain ranges (ie, most of major terrain features). This

component was implemented by starting with a single line segment, and recursively adding

additional line segments to the end of each last added segment until one of the following criteria

was met: the overall line segment height influence is too small; there are more than 20 segments; or

the total line length is too long.

To easily create very unique and a wide variety of different connected line segments, there were a

variety of settings applied to each created line segment.

These are: Angle Change – the amount each line segment can change in angle from the last; Branch

Amount – the probability that a secondary line segment will branch off when creating a new

segment; LineLength – the overall length of the line segment; and Height Influence – how strongly

Figure 24 - Visualization of generated circle primitive shapes over standard four grids cells (on the left) – Generation of
a circle on the right can be seen from a super shape cell

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 30

the influence will be. Each of these settings are flexible, and tweaking them in certain ways allow for

a many different types of connected line segments to be created.

To properly judge height influence of a connected-line component, every line-segment within the

shape has a radius associated with each end of the line, this is illustrated by the pentagons which

have a radius showing their area of influence (Figure 25). A line may have many areas of influence

overlapping due to large radiuses and small line-segments length, which can lead to weird height

influences on the polygons. To overcome this, the top five influences are taken from each connected

line segment.

The starting line segment has a random height and radius, and each connecting line-segment will

have a new height and radius based off the last. This allows for a natural growth in influence (or

decline) which is a feature seen in hills, rivers and mountains.

Due to time constraints, the only major line types created were mountains, hills and rivers. Rivers

were the only line type which offered a negative height-influence; with the other two being positive.

4.3.2.1 – Line Differences

Rivers, hills and mountains at their core are similar in their generation with a different statistic likely-

hood for certain settings to be chosen (defined above). Rivers tended to be smoother, long, with

minimal branching therefore the AngleChange setting was statistically more likely to be lower, with a

longer LineLength, with a shallow height influence etc.

Figure 25 - A connected line segment featuring branching.
This is of type hill.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 31

On the contrary, hills and mountain both provide a positive influence. Mountain ranges have a

higher likelihood to branch, and provide a sharper height influence. Hills will be smoother, and

branch less. Both of these types have equal chance of all AngleChange settings.

These values are determined based off C#s random class again, with the seed being the cells unique

value

This causes an issue however, as inherently the super-shape grid cell at 0,0 will have the same

unique numerical seed as the standard cell at 0,0 – which will in turn mean they generate the same

shapes, except the super-shape cell will just exhibit a larger scale. To overcome this, as the user may

be able to recognise repeated patterns, the Y value in the super-shape grid is inverted when used as

the seed (as X and Y are shorts, this means for the practical use of the seed in the super-shape grid,

the Y value will be short.MAX – Y).

This completely fixes the issue, as each super-shape cell contains 10 standard cells, the point where

these values will be equal again will never exist as the short bounds for standard cells will become an

issue first.

4.3.2.2 – Height Influences

As we are not using erosion to make these raw shape influences look more realistic, this puts much

more meaning in that way that the shapes inherently influence the surrounding area as it must

produce decent results from this alone.

In the real-world, mountains generate peaks, while hills are smooth gradual changes and so are

rivers. This is not always the case, but the idea of creating realistic features most of the time is fine

as this is used in a game context, and the occasional not-so-realistic feature just bypasses the user.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 32

4.3.3 – 3D Rendering

Now with the ability to generate a normalized and real height for each polygon created within visible

and neighbouring cells, it is possible to render this terrain in a 3D fashion. This will provide a massive

benefit, as 2D rendering is not intuitive to individuals who are not familiar with what they are

looking at, thus allowing a larger audience to understand what they are seeing.

Rendering at its core within MonoGame [16] relies on the passing of vertices (points in 3D space) in

sets of three (triangles) to the graphics processing unit to render on the screen. To implement this,

whenever a polygon is created, it will be triangulated. Then for each vertex within that triangle, the

height associated with the polygon will be mapped to that vertex. The idea behind this is that it will

create a smooth render surface, as each vertex belongs to many polygons with changing heights, so

averaging the heights will create a proper render surface.

This 3D render engine was generated from scratch relying on the framework that MonoGame has

provided. Using the influences that were provided from the primitive shapes, and rendering the

terrain all one colour, it resulted in Figure 26.

Figure 26 - Initial 3D rendering of a 3x3 grid structure, each cell being 2000x2000 pixels

Figure 26 shows a 3x3 grid structure being rendered in 3D. Each grid cell here uses the Medium grid

size (which is 2000x2000 pixels) and therefore the region we are seeing is 6000x6000 pixels total.

4.3.3.1 – Smooth Lighting

Figure 26 has very sharp edges between the triangles which create a very unrealistic terrain surface,

as in the real world, terrain is a lot smoother. We wish to remove this sharpness, and can do so with

a trick known as Weighted Vertex Normals [21]. The way the lighting engine works is by calculating

the normal of the triangles surface, which is a line perpendicular to the triangles tangent plane [21],

which then is used by MonoGame to determine how the lighting should effective the curved surface.

A triangle is composed of three vertices, however each vertex is shared by many others each with

different normal values. A smooth surface can be made for each vertex, setting its normal value to

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 33

the average of all the triangles it is connected to. Furthermore, it is important to not only average

them, but weight the normal value based off the area of the triangle. This is important as a tiny

triangle should not have the same lighting effect as a larger one [21].

Saving the normal average was done in the same way that the height of any vertex was done. The

vertex was hashed, and then the resulting normal average was saved along with each vertex.

The effect of implementing this turned is seen in Figure 27.

4.3.3.2 – Float Imprecision

Both the normal averages and the height averages for each vertex were stored with their 2D Vector2

(X and Y) being hashed. The vertices which are a part of edge polygons of each Voronoi Diagram are

generated potentially over many different Voronoi Diagrams which connect. This in effect causes

very slight differences in their float values and therefore causes a different hash to occur.

In effect, if a float difference is large enough that it hashes to a different value, this will cause the

height and lighting normal averages to not be hashed to the right vertex value. This is an inherent

problem within MonoGame, as their use of float values within their base variables (such as Vector2

and Vector3) is built in. Although this has its purpose for graphical renders, it is not meant for

hashing. Float variables are not precise by nature once they hit significantly large numbers. They are

backed by 32 bits, and are only capable of accurately representing seven significant figures [22].

This gives it a problem in accurately representing points, and as the grid cells can be very large

(1000-4000 pixels), these vertices can be massive and cause float values to get very imprecise very

quickly. Assuming that floats need to be accurate to at least 3 decimal points for accurate hashes,

and that the individual has chosen the largest grid size of 4000, the moment 3 grids are created this

already has created 8 significant figures (5 figures to store the location of 10,000 + and 3 for the

decimal points) which create a high likely hood for inaccurate hashes (Figure 28), which show up as

tears in the terrain.

Figure 27 - Comparison of terrain with (on the right) Weighted Vertex Normals against without (on the left)

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 34

Figure 28 - Incorrect hashing causes tearing in terrain

The limits of using shorts for the grid structure, and the maximum size of a grid (4000 pixels) means

that at most the terrain will exist at 131068000 (32,767 * 4000). This value is 9 significant figures,

including 3 decimal points, meaning that we require 12. This can easily be fixed by switching the

floats to doubles, as the double type is a 64 bit backed floating number which can accurately store

15-16 significant figures [22]. Because of this, the implementation shifted to using new classes

created to mimic the Vector2 and Vector3 behaviour of the native classes, yet having double backing

instead which completely fixed the tearing as they can store accurately within the scope of the

terrain generation.

All modern processors (x86) will handle both float and double variables in the same way meaning

there will be negligible performance differences by now using double backed vector classes [23]. The

only concern here is that the doubles will use twice the storage. This in the context of our project is

not a concern as there will never be many cells stored at any given time.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 35

4.4 – Biomes
The implementation of biomes wasn’t a particularly hard task to achieve. As described in the section

3.5, the idea was to utilize Perlin Noise (which is repeatable and identical) to create two unique

value maps over the terrain; one used for temperature and one for precipitation. The values were

based at a polygon level, and each polygon was assigned a temperature and precipitation value

between 0.0 and 1.0 (stored as a double type) from a Perlin Noise function which had the X and Y

input being the centre coordinate of the polygon.

Precipitation was purely based on the value assigned by the Perlin Noise function, however, to add a

more realistic nature to the temperature, this was also influenced by the height of the polygon. As

the polygons height has been determined prior, we can now determine its final value.

Temperature is based 30% on the Perlin Noise function and 70% on the height. The height influence

on the temperature is determined as follows:

The following values are normalized between 0.0 and 1.0

Average Height: 0.3 (this is an arbitrary value that can be changed)

The difference between the polygons normalized height and the Average Height will then directly be

the influence for the temperature. For example, if a polygon has a height of 0.5, its temperature

decrease will be by 0.2 (but in reality this is 0.2 * 0.7 as height is a 70% influence). This is because the

different between the height and the average height (0.5 – 0.3) is 0.2.

The values of the temperature and precipitation then are used to determine the biome based on

Whittakers Model.

4.4.1 – Biome Colours and Water

To distinguish between the biomes within the 3D rendering and to add life to the terrain, colours

were added. Each biome will be assigned two distinct colours, to be associated with its “above sea

level” colour, and its “below sea level”. Sea level is a concept which is introduced to create water

features which are important for game usage and a realistic feel.

The following values are normalized between 0.0 and 1.0

Sea Level: 0.15 (this is an arbitrary value that can be changed)

Anytime a polygon’s normalized height is below sea level, its colour will be set to its “below sea

level” colour, else its “above sea level”. There is a difference between these as the biome would

change its appearance (such as grass to dirt) in the event of heavy water exposure. The colours are

intended to mimic the real-world appearance, and are listed in Table 1.

Biome Above Sea Level Colour (RGB) Below Sea Level Colour (RGB)

Grass Grass - Green (R:0, G: 128, B: 0) Dirt - Brown (R:160, G: 82, B: 45)

Desert Sand - Yellow (R:238, G: 232, B: 170) Saturated Sand - Gold (R:255, G: 255, B: 0)

Snow Snow - White (R:255, G: 255, B: 255) Ice - Light Blue (R:173, G: 216, B: 230)

Wet Grass Saturated Grass - Dark Green (R:0,
G: 100, B: 0)

Dirt - Brown (R:0, G: 50, B: 0)

Table 1 - Colours for each biome. Colours are listed with their respective R G B values

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 36

Once this was done, it was also important to render water at the constant sea level height. Water

within this project was defined as having the colour blue (R:0, G:0, B: 200) with an alpha

(transparency) of 128 (50%). It is possible to simply render water over each cell of colour blue at a

50% transparency to mimic water. We can render this water layer as two triangles which span the

entire cell, and will be rendered exactly at the height of 0.15 (normalized sea level), and then repeat

this for all cells that are being rendered. This, along with the biome colours had a result seen in

Figure 29.

Figure 29 shows the “Above Sea Level” and “Below Sea Level” colours for both the grass and desert

biomes. The usage of a transparent water layer makes it look more realistic, however, the change in

colours between biomes are very sharp. As the biomes are determined by a mapping between

temperature and precipitation, there therefore exists boundaries where it is a close decision

between two biomes. In this event, the project implemented a smoothing colour technique which

merges the colour between various biomes depending on how “close” they are to a biomes criteria.

This smoothing is shown in Figure 30.

Figure 30 - Smoothing of biome colours to match the criteria (temperature vs precipitation)

Figure 29 – Comparison of the same terrain being rendering with (on the right) water and without (on the left)

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 37

Figure 30 shows a clear change in colour over the grass in this example. The smoothing works by

making the darker patches of grass correspond to the higher level of precipitation and the lower

levels of temperature. This natural variation adds a more realistic feel as opposed to block colours.

4.4.2 – Trees

Trees were added to help add perspective and scale for the individual viewing the terrain. Until trees

were added there were no objects to relate to the grand scale of the terrain.

The trees used in the render were oak trees by model. The placement of trees, as for real oak trees,

will only be in areas of optimal temperature and precipitation, therefore virtually only appearing on

grass biomes. The range itself is between 0.3-0.5 temperature and 0.4-0.7 precipitation. The chance

of a tree spawning on a given polygon is random chance, based on how close the polygons

temperature and precipitation values are to the optimal value (centre of the bounds). Figure 31

shows the spawning on trees, with a cell removed (of 2000x2000 pixels) for to show scale.

Figure 31 - Showing trees with a chunk removed for scale. The cell is 2000x2000 pixels

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 38

4.5 – Algorithm Steps
As discussed, only terrain which is visible to the user will be generated. At present the

implementation only ever generates the 3x3 grid around the cell the user is currently in (however

this is easy to change, and may be a setting with future work that a user can opt to increase with a

more powerful computer).

MonoGame provides a base framework that has an update loop which is called 60 times per second.

To reduce putting all the algorithmic stress in to one update tick and potentially causing delay for

the user, the algorithm gets split over many ticks. The algorithm in implementation works as follows:

One Tick

• Check to see if the area within the 3x3 of the user has been generated

o If there are gaps, generate the Voronoi Diagram for it

o Triangulate all the polygons

o Keep track of generated areas

Second Tick

• Check to see if the area within the 3x3 if only a Voronoi Diagram has been generated

o Generate the shapes for that cell

o Generate the height map

o Generate the biomes (this completes the terrain generation)

Third Tick

• Check to see generated areas no longer within the visible view

o Dispose of the area no longer needed to reduce system memory usage

As there are three distinct ticks, that allows at most 20 grid areas to be produced per second which

allows the user to move very quickly. This also spreads the computational load over the ticks, to

ensure no one tick takes too long and causes delay. As the third tick is purely house-keeping, the first

two are of interest to evaluate.

5 – Evaluation
The nature of this project has many aspects which are difficult to truly evaluate due to the aspect of

subjective opinions, however, by referring to the aim it is still possible to make as many concrete

conclusions as possible.

5.1 – Evaluation Metrics

5.1.1 – Storage Requirements and World Size

The terrains generation is based entirely off a single numerical seed value determined at the start of

the project (or may be specified). The application itself requires zero storage on the local computer it

is being ran on due to the ability that it can regenerate a given area of terrain in real-time for the

same result, assuming the same seed. This means that there is no bottleneck for exploring the entire

theoretical world. This aim was met successfully.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 39

5.1.2 – Replay Value

Given the same numerical seed the terrain generated will always be identical at all areas within the

games world, being since all the algorithms selected to perform the generation are entirely

deterministic, leading to a repeatable and identical nature. This numerical seed is an integer value,

being a 32 bit variable within C#. This means that there are at least 4294967295 different seeds

available, which correspond to the number of different terrains that can be generated [18].

5.1.3 - Multiplayer

This allows a massive amount of replay value, due to the number of different terrains that may be

generated, but the fact it is all based off a single numerical seed means that only this single seed

value must be shared amongst different users to effectively use this generator in a multiplayer

environment. This removes any bottleneck produced by slow internet connections in terms of no

longer having any need to share generated terrain over a network.

5.1.3 – Efficiency

One of the core aims was to produce new terrain at run-time in minimal time so the user will not

notice any significant delay. Benchmarking in Appendix A reveals that with max settings chosen (Grid

size of large and Polygon point amount of high) that a modern computer will approximately a

generate single cell of terrain within two separate ticks of 11ms and 13ms respectively (Appendix A).

Although 100ms is regarded as the tolerance before users notice any real delay [15], it is worth

noting that as MonoGame has 60 update ticks per second. This equates to each update tick lasting

approximately 16ms. Therefore, MonoGame itself can handle the worst case of a 13ms computation

in a frame, and as such, MonoGame will not have any unexpected delay and nor should the user

notice.

Users will experience an interruption of thought process if they experience a delay of more than 1

second. This may be a problem in the event of a teleportation which would mean the whole 3x3 grid

would need to be generated (as there are no pre-generated cells). As discussed, the algorithm can

produce 20 terrain cells per second, which by far includes the 3x3 (9 cells total). These 9 cells would

be generated in at most 27 update ticks (as three ticks per cell) meaning approximately 0.5 seconds

within MonoGame.

The efficiency of this terrain generation avoids the 100 ms threshold of being able to create

neighbouring terrain cells (for continued exploration) and the 1 second threshold for teleportation,

meeting the projects aims in this respect.

5.1.4 – Effectiveness of Voronoi

The aim of using Voronoi was to remove any obvious regularity from the terrains core structure.

When looking closely, Figure 32 shows core shapes that the terrain is made from. There are obvious

sharp corners which exist, except they do not show any regular pattern. It would be possible to

reduce this by increasing the number of polygons per cell at the expense of computation. However,

the aim was to eliminate the appearance of regularity which Voronoi Diagrams achieve.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 40

Figure 32 - A segment of terrain to highlight the visible irregular polygon structure

5.1.5 – General Realism

Note, the following comparison photos were received from https://www.pexels.com/ which are

licensed under the Creative Commons Zero (CC0) license and therefore require zero attribution.

(https://www.pexels.com/photo-license/)

We can draw comparisons from segments within the generated terrain against real-world features.

Figure 33 shows a variety of comparisons held with each respective comparison being left to right on

a single row. The pictures of the generated terrain were found within a 50-cell radius from the start,

and were chosen over five separate random seed generations. We can therefore draw direct

comparisons and see the similarities between the terrain generated and real-world features and say

that they do exist within the game environment.

Furthermore, large scale shapes have successfully been implemented which was one of the core

aims of the project. The mountain range comparison within Figure 33 (2nd to bottom row) span over

1 kilometre long.

https://www.pexels.com/
https://www.pexels.com/photo-license/

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 41

 Figure 33 - Comparisons of in-game terrain segments against real-world features (left to right). Photos sourced via
www.pixels.com

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 42

5.1.6 – Game Usage

Game usage is a subjective topic, and depends almost entirely on the genre of game. This project

was general purposed and intended to have flat areas for building upon or having battles on, as well

as interesting features to explore. Figure 34 were all terrain segments found within a 100 by 100 cell

block area with the seed of 1234. The fact that these features were easy to find and abundant show

good proof of concept of the success of this terrain generation for game interest and usage.

Figure 34 - Three segments of terrain found within the seed of 1234, showing flat areas, large
water features and explorable mountain ranges

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 43

5.2 – Potential Issues
The existing algorithms in place are prone to unexpected behaviour in the resulting generated

terrain, and this is a consequence of decisions made throughout this project.

5.2.1 – Bounded Generation

Although the world size has a maximum size of 7864km by 7864km, it is still bounded by the numeric

limits within C#. The decision to use a grid-cell overlay and to set their coordinates as shorts limited

the cells to go at most –32,768 or 32,767 in the X and Y direction from the centre. Although it is very

unlikely the user will ever reach these bounds, it is still an issue if they do as the terrain will not

generate any further. (This may happen in the event of teleportation or very fast travel in one

direction). This issue can always be mitigated using larger variables (such as replacing shorts with

integers and making the respective changes to integrate this), however this just delays the issue.

This will always be an issue within a software environment and therefore the best we can do is

ensure the user is unlikely to be effected.

5.2.2 – Double Imprecision

The decision to replace MonoGames Vector2 and Vector3 usage with double-backed identical

classes (opposed to float) just delays the issue of imprecision. The use of the double type does allow

for a much larger amount of precision (15-16 significant figures, vs the float 7 [22]). Although the

double type as of now works due to the size limit of the bounded generation (from the size of the

short limiting the size), if the short ever got replaced to a numerical value of larger bounds, the

double might again not be appropriate again.

5.2.3 – Shape Super Grid

Although this does solve the issue of having large shapes which extend much further past the users

view point, this still delays the issue. Having this structure limits the size of shapes being produced

still based on the size of the cell which may cause annoyance in the user considering the world size

may be up to 7864km wide, and that the max shape size is a fraction of that. This could be mitigated

by adding an even larger scale of super grids.

5.3 – Future Work

5.3.1 – Storage

Although currently the terrain requires no long-term storage, some game scenarios may need

terrain related storage. The base terrain requires no storage to generate and use, however, once the

user starts to build on the terrain or alter it in any way the changes must be stored.

5.3.2 – More Primitive Shapes

Currently there are only two forms of primitive shapes, circles and connected line segments. While

these shapes are intended to mimic real-world features such as mountain ridges, hills and rivers,

these two shapes limit the features which can be be created. The addition of more shapes would

help add variety as well as enable more features to be seen.

5.3.3 – More Biomes

The biomes which exist within the terrain are based off Whittakers Biome model, however has a

very simplified version. The introduction of all the different biomes within this model would increase

the variety and interest of the world.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 44

5.3.4 – Immersive Environment

Outside of the terrain, there exists only one type of tree. Addition of more tree types, shrubbery and

explorable places such as ruins, or randomly generated villages would increase its game usage

potential.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 45

6 – Conclusion
The aims of this project were to create an infinite (only bounded by numeric precision) terrain

generator, which had no obvious regular base structure, required no storage on the user’s

computer, and was applicable for game usage. The approach used sufficiently covered these aims by

providing an efficient means to generate terrain around the user at run-time while requiring zero

storage on their computer.

This project proved the potential in using Fortunes Algorithm at a context larger than the initial finite

area that it was previously bounded to. The seamless addition in any direction by exploiting the line-

sweep proved that Voronoi Diagram have applicable uses within a game context to hide any

regularity on the surface at a very-large scale. The use of primitive shapes along with the shape

super-grid implementation allowed for the generation of realistic height-maps. Furthermore, larger-

scale structures were also able to be generated successfully to create features such as mountain

ranges, rivers and lakes.

The terrain itself contained flat areas to build and battle on, as well as interesting areas to explore

using mountain ranges and ever-changing environments with biomes. The entire terrain world can

be created identically if the initial seed remains the same, meaning that in a multiplayer context only

this one seed value needs to be shared removing previous network strain.

The end-result showed a realistic and differing terrain when compared to real-world features, while

still maintaining direct applicable game usages with flat areas to build-upon and vast mountain

ranges to explore.

If this project was to continue being developed, the addition of more primitive shapes and biomes

should be implemented to allow for a greater range of features to occur in the terrain as well as

allowing for further variety in the terrain.

Overall, this project was a success in meeting the initial aims set out.

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 46

Bibliography

[1] H. Tulleken, “How to Use Perlin Noise in Your Games,” 25 5 2009. [Online]. Available:

http://devmag.org.za/2009/04/25/perlin-noise/.

[2] Intel iQ, “Fractal Terrain Generator: Simple Method For Stunning Landscapes,” 23 4 2014.

[Online]. Available: https://iq.intel.com/simple-code-generates-beautifully-realistic-terrain-

with-fractals/. [Accessed 1 10 2017].

[3] J. Fingas, “Here's how 'Minecraft' creates its gigantic worlds,” 03 04 2015. [Online]. Available:

https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/. [Accessed 20 4

2017].

[4] NoMansSky, “Procedural Generation,” 24 8 2017. [Online]. Available:

https://nomanssky.gamepedia.com/Procedural_generation. [Accessed 6 10 2017].

[5] Red Blob Games, “Polygonal Map Generation for Games,” 04 09 2010. [Online]. Available:

http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/.

[Accessed 2 4 2017].

[6] S. Fortune, “A Sweepline Algorithm for Voronoi Diagrams,” Algorithmica, pp. 153-174, 1987.

[7] D. M. Haahr, “Introduction to Randomness,” 2015. [Online]. Available:

https://www.random.org/randomness/. [Accessed 10 4 2017].

[8] T. Mounton and E. Bechet, “Lloyd relaxation,” Universiy de Liege, Liege.

[9] R. Bridson, “Fast Poisson Disk Sampling in Arbitrary Dimensions,” University of British

Columbia, Vancouver, 2007.

[10] J. Olsen, “Realtime Procedural Terrain Generation,” University of Southern Denmark, 2004.

[11] E-DOG, “Water erosion on heightmap terrain,” 8 October 2011. [Online]. Available:

http://ranmantaru.com/blog/2011/10/08/water-erosion-on-heightmap-terrain/.

[12] M. O'Leary, “Generating fantasy maps,” 2015. [Online]. Available:

http://mewo2.com/notes/terrain/. [Accessed 10 4 2017].

[13] R. H. Whittaker, “Classification of Natural Communities,” Botanical Review, vol. 28, no. 1, pp. 1-

239, 1962.

[14] “Does Elevation Affect Temperature?,” 8 8 2016. [Online]. Available:

http://www.onthesnow.com/news/a/15157/does-elevation-affect-temperature-. [Accessed 5

8 2017].

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 47

[15] J. Nielsen, “Response Times: The 3 Important Limits,” 1 January 1993. [Online]. Available:

https://www.nngroup.com/articles/response-times-3-important-limits/.

[16] MONOGAME, “MonoGame,” 2017. [Online]. Available: http://www.monogame.net/.

[Accessed 2 3 2017].

[17] O. Dovgoshey, O. Martio and M. V. V.Ryazanov, “The Cantor function,” University of Helsinki,

2005.

[18] J. Mayo, “Lesson 2: Operators, Types, and Variables,” 2016. [Online]. Available: http://csharp-

station.com/Tutorial/CSharp/Lesson02. [Accessed 5 10 2017].

[19] Microsoft, “Random Class,” 2017. [Online]. Available: https://msdn.microsoft.com/en-

us/library/system.random(v=vs.110).aspx. [Accessed 9 10 2017].

[20] Microsoft, “Vector2 Structure,” [Online]. Available: https://msdn.microsoft.com/en-

us/library/microsoft.xna.framework.vector2.aspx. [Accessed 9 10 2017].

[21] M. Buijs, “Weighted Vertex Normals,” 23 12 2007. [Online]. Available:

http://www.bytehazard.com/articles/vertnorm.html. [Accessed 13 6 2017].

[22] Net-informations.com, “Decimal vs Double vs Float,” [Online]. Available: http://net-

informations.com/q/faq/float.html. [Accessed 10 9 2017].

[23] N. Limare, “Integer and Floating-Point Arithmetic Speed vs Precision,” 29 1 2015. [Online].

Available: http://nicolas.limare.net/pro/notes/2014/12/12_arit_speed/. [Accessed 8 10 2017].

[24] “Oak tree facts,” [Online]. Available:

http://www.softschools.com/facts/plants/oak_tree_facts/505/. [Accessed 20 8 2017].

[25] L. Viitanen, “Physically Based Terrain Generation,” Metropolia Ammattikorkeakoulu, 2012.

[26] NOAA, “National Temperature and Precipitation Maps,” 2017. [Online]. Available:

https://www.ncdc.noaa.gov/temp-and-precip/us-maps/. [Accessed 24 4 2017].

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 48

Appendix A
Benchmarks for the computation of terrain; these refer to the distinct two ticks of generation

specified in 4.5.

The specifications of the computer which preformed these benchmarks are:

CPU: Intel Core i7-5700HQ – 8 core 2.70GHz

RAM: 12GB DDR3

GPU: Intel HD Graphics 5600

The benchmarking process will test two core attributes: Grid Size (small, medium and large) and

Polygon Points (low, medium, high). Both of these metrics directly create a larger amount of

polygons within the Voronoi Diagram which is the basis for computational expense. In the interest of

benchmarking, the lowest setting on both Grid Size and Polygon Points will be ignored as we are

curious for the higher cases of performance.

The following table outlines the average first and second tick times, taken over the generation of

100 cells.

Grid Size Polygon Points Average First Tick (ms) Average Second Tick
(ms)

Medium Medium 5ms 7ms

Large Medium 7ms 8ms

Medium High 9ms 11ms

Large High 11ms 13ms

Max Times 11ms 13ms

Andrew Leach – ajl36 - 1137001 ENGG492 – Software Interim Report

 49

Appendix B
The scale of the world is based off the trees present in the game for scale.

Oak tree bases approximately grow on average to 4 feet in width (approximately 1.2 metres) [24].

The model base itself spans 20 pixels, and therefore this scale can be used to deduce an

approximate size of the world using the metric system.

Therefore, using 1.2 metres per 20 pixels we get the results in

 Metres World Dimensions
(Multiplied by the shorts limit)

Small Grid Size (1000x1000
pixels)

60m x 60m 1966km x 1966km

Medium Grid Size (2000x2000
pixels)

120m x 120m 3932km x 3932km

Large Grid Size (4000x4000
pixels)

240m x 240m 7864km x 7864km

